Distributional transformations, orthogonal polynomials, and Stein characterizations

نویسندگان

  • Larry Goldstein
  • Gesine Reinert
چکیده

A new class of distributional transformations is introduced, characterized by equations relating function weighted expectations of test functions on a given distribution to expectations of the transformed distribution on the test function’s higher order derivatives. The class includes the size and zero bias transformations, and when specializing to weighting by polynomial functions, relates distributional families closed under independent addition, and in particular the infinitely divisible distributions, to the family of transformations induced by their associated orthogonal polynomial systems. For these families, generalizing a well known property of size biasing, sums of independent variables are transformed by replacing summands chosen according to a multivariate distribution on its index set by independent variables whose distributions are transformed by members of that same family. A variety of the transformations associated with the classical orthogonal polynomial systems have as fixed points the original distribution, or a member of the same family with different parameter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the q-polynomials: a distributional study

In this paper we present a uni1ed distributional study of the classical discrete q-polynomials (in the Hahn’s sense). From the distributional q-Pearson equation we will deduce many of their properties such as the three-term recurrence relations, structure relations, etc. Also several characterizations of such q-polynomials are presented. c © 2001 Elsevier Science B.V. All rights reserved.

متن کامل

. C A ] 4 O ct 2 00 6 A SEMICLASSICAL PERSPECTIVE ON MULTIVARIATE ORTHOGONAL POLYNOMIALS

Differential properties for orthogonal polynomials in several variables are studied. We consider multivariate orthogonal polynomials whose gradients satisfy some quasi–orthogonality conditions. We obtain several characterizations for these polynomials including the analogous of the semiclas-sical Pearson differential equation, the structure relation and a differential– difference equation.

متن کامل

Discrete Spectral Transformations of Skew Orthogonal Polynomials and Associated Discrete Integrable Systems

Discrete spectral transformations of skew orthogonal polynomials are presented. From these spectral transformations, it is shown that the corresponding discrete integrable systems are derived both in 1+1 dimension and in 2+1 dimension. Especially in the (2+1)dimensional case, the corresponding system can be extended to 2 × 2 matrix form. The factorization theorem of the Christoffel kernel for s...

متن کامل

Extremal problems, inequalities, and classical orthogonal polynomials

In this survey paper we give a short account on characterizations for very classical orthogonal polynomials via extremal problems and the corresponding inequalities. Beside the basic properties of the classical orthogonal polynomials we consider polynomial inequalities of Landau and Kolmogoroff type, some weighted polynomial inequalities in L2-norm of Markov-Bernstein type, as well as the corre...

متن کامل

Szegő and para-orthogonal polynomials on the real line: Zeros and canonical spectral transformations

We study polynomials which satisfy the same recurrence relation as the Szegő polynomials, however, with the restriction that the (reflection) coefficients in the recurrence are larger than one in modulus. Para-orthogonal polynomials that follow from these Szegő polynomials are also considered. With positive values for the reflection coefficients, zeros of the Szegő polynomials, para-orthogonal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004